Article de Périodique
Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers (2014)
Auteur(s) :
SCHOBER, W. ;
SZENDREI, K. ;
MATZEN, W. ;
OSIANDER-FUCHS, H. ;
HEITMANN, D. ;
SCHETTGEN, T. ;
JÖRRES, R. A. ;
FROMME, H.
Année :
2014
Page(s) :
628-637
Langue(s) :
Anglais
Domaine :
Tabac / Tobacco / e-cigarette
Discipline :
PRO (Produits, mode d'action, méthode de dépistage / Substances, action mode, screening methods)
Thésaurus géographique
ALLEMAGNE
Thésaurus mots-clés
E-CIGARETTE
;
NICOTINE
;
TABAGISME PASSIF
;
ANALYSE CHIMIQUE
;
TOXICITE
Résumé :
Despite the recent popularity of e-cigarettes, to date only limited data is available on their safety for both users and secondhand smokers. The present study reports a comprehensive inner and outer exposure assessment of e-cigarette emissions in terms of particulate matter (PM), particle number concentrations (PNC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), carbonyls, and metals. In six vaping sessions nine volunteers consumed e-cigarettes with and without nicotine in a thoroughly ventilated room for two hours. We analyzed the levels of e-cigarette pollutants in indoor air and monitored effects on FeNO release and urinary metabolite profile of the subjects. For comparison, the components of the e-cigarette solutions (liquids) were additionally analyzed.
During the vaping sessions substantial amounts of 1,2-propanediol, glycerine and nicotine were found in the gas-phase, as well as high concentrations of PM2.5 (mean 197 μg/m3). The concentration of putative carcinogenic PAH in indoor air increased by 20% to 147 ng/m3, and aluminum showed a 2.4-fold increase. PNC ranged from 48,620 to 88,386 particles/cm3 (median), with peaks at diameters 24-36 nm. FeNO increased in 7 of 9 individuals. The nicotine content of the liquids varied and was 1.2-fold higher than claimed by the manufacturer.
Our data confirm that e-cigarettes are not emission-free and their pollutants could be of health concern for users and secondhand smokers. In particular, ultrafine particles formed from supersaturated 1,2-propanediol vapor can be deposited in the lung, and aerosolized nicotine seems capable of increasing the release of the inflammatory signaling molecule NO upon inhalation. In view of consumer safety, e-cigarettes and nicotine liquids should be officially regulated and labeled with appropriate warnings of potential health effects, particularly of toxicity risk in children.
During the vaping sessions substantial amounts of 1,2-propanediol, glycerine and nicotine were found in the gas-phase, as well as high concentrations of PM2.5 (mean 197 μg/m3). The concentration of putative carcinogenic PAH in indoor air increased by 20% to 147 ng/m3, and aluminum showed a 2.4-fold increase. PNC ranged from 48,620 to 88,386 particles/cm3 (median), with peaks at diameters 24-36 nm. FeNO increased in 7 of 9 individuals. The nicotine content of the liquids varied and was 1.2-fold higher than claimed by the manufacturer.
Our data confirm that e-cigarettes are not emission-free and their pollutants could be of health concern for users and secondhand smokers. In particular, ultrafine particles formed from supersaturated 1,2-propanediol vapor can be deposited in the lung, and aerosolized nicotine seems capable of increasing the release of the inflammatory signaling molecule NO upon inhalation. In view of consumer safety, e-cigarettes and nicotine liquids should be officially regulated and labeled with appropriate warnings of potential health effects, particularly of toxicity risk in children.
Affiliation :
Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Munich, Germany