EMCDDA initial report on the new psychoactive substance methyl 2-({[1-(4-fluorobutyl)-1H-indol-3-yl] carbonyl}amino)-3,3-dimethylbutanoate (4F-MDMB-BICA)

In accordance with Article 5b of Regulation (EC) No 1920/2006 (as amended)
Contents

Statement regarding the United Kingdom... 3
Acknowledgements.. 3
1. Introduction... 4
2. Information collection process ... 5
3. Information required by Article 5b(2) of Regulation (EC) No 1920/2006 (as amended)..... 7
 3.1 Nature, number and scale of incidents showing health and social problems in which the new psychoactive substance may potentially be involved, and the patterns of use of the new psychoactive substance ... 7
 3.2 Chemical and physical description of the new psychoactive substance and the methods and precursors used for its manufacture or extraction ... 12
 3.3 Pharmacological and toxicological description of the new psychoactive substance 16
 3.4 Involvement of criminal groups in the manufacture or distribution of the new psychoactive substance ... 17
 3.5 Information on the human and veterinary medical use of the new psychoactive substance, including as an active substance in a medicinal product for human use or in a veterinary medicinal product .. 18
 3.6 Information on the commercial and industrial use of the new psychoactive substance, the extent of such use, as well as its use for scientific research and development purposes 19
 3.7 Information on whether the new psychoactive substance is subject to any restrictive measures in the Member States .. 19
 3.8 Information on whether the new psychoactive substance is currently or has been under assessment within the system established by the 1961 Single Convention on Narcotic Drugs, as amended by the 1972 Protocol, and the 1971 Convention on Psychotropic Substances ... 21
 3.9 Other relevant information .. 21
4. Analysis and assessment ... 21
5. References ... 24
Statement regarding the United Kingdom

This report covers a reference period that includes 2020 (up to the moment of writing). The United Kingdom had left the European Union as of 1 February 2020. However, during the transitional period, the United Kingdom continues to participate in the European Union Early Warning System on new psychoactive substances. Unless stated otherwise, for the purpose of this report, the term ‘Member States’ includes the United Kingdom.

Acknowledgements

The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) would like to thank the following for their contribution in producing this publication:

- the Early Warning System (EWS) correspondents of the Reitox national focal points (NFPs) and experts from their national EWS networks;
- the Europol national units (ENUs) and Europol Project Synergy;
- the national competent authorities responsible for human and veterinary medicinal products in the Member States, Norway, Iceland and Liechtenstein;
- the European Medicines Agency (EMA);
- the European Chemicals Agency (ECHA), the European Centre for Disease Prevention and Control (ECDC), the European Food Safety Authority (EFSA) and the European Commission; and
- the World Health Organization (WHO).

In addition, the EMCDDA would also like to express its thanks and appreciation to the Public Health Agency of Sweden and the National Board of Forensic Medicine, Sweden, for providing the information on the pharmacology of 4F-MDMB-BICA used in this initial report.
1. Introduction

Methyl 2-[(1-(4-fluorobutyl)-1H-indol-3-yl[carbonyl]amino)-3,3-dimethylbutanoate (4F-MDMB-BICA) is a synthetic cannabinoid receptor agonist. Similar to other synthetic cannabinoids, it is sold as a 'legal' replacement for cannabis. Because of their high potency, synthetic cannabinoids can pose a high risk of severe poisoning, which in some cases can be fatal.

In Europe, 4F-MDMB-BICA is monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) as a new psychoactive substance (1) through the European Union Early Warning System (EWS) in accordance with Article 5a of Regulation (EC) No 1920/2006 (as amended) (2,3).

4F-MDMB-BICA was formally notified as a new psychoactive substance (4,5) by the EMCDDA on behalf of Belgium on 2 July 2020. The notification was based on the identification of the substance in 1.5 kg of white powder seized by Belgian customs at Bierset Airport, Belgium, on 31 March 2020. The seizure originated from China and was en route to the Netherlands.

Since the formal notification, information on 4F-MDMB-BICA has been exchanged between the EMCDDA and the European Union EWS network (EMCDDA, Europol, Reitox national focal points and the Commission); the European Medicines Agency (EMA) has been kept duly informed.

On 14 August 2020, the EMCDDA issued a public health alert to the network highlighting an outbreak of 11 deaths (6) associated with 4F-MDMB-BICA in Hungary between May and August 2020.

On 8 September 2020, the EMCDDA informed the EWS network that, based on potential public health risks, the EMCDDA had added 4F-MDMB-BICA to the list of new psychoactive substances under intensive monitoring (7) and requested that the network expedite reporting of any event involving 4F-MDMB-BICA to the EMCDDA until further notice.

(6) At the time the alert was issued, Hungary reported 11 deaths in which 4F-MDMB-BICA had been identified in biological samples. Since then, Hungary has reported an additional 10 deaths, bringing the total number of deaths reported to 21, as of 8 October 2020.
Article 5b of Regulation (EC) No 1920/2006 (as amended) requires that ‘Where the Centre, the Commission or a majority of the Member States considers that information shared on a new psychoactive substance collected pursuant to Article 5a in one or more Member States gives rise to concerns that the new psychoactive substance may pose health or social risks at Union level, the Centre shall draw up an initial report on the new psychoactive substance’.

This initial report is submitted to the Commission and the Member States. The purpose of the initial report is to provide scientific evidence to the Commission to allow it to make an informed decision regarding whether or not there is a need to request a risk assessment on a new psychoactive substance as set out in Article 5c of Regulation (EC) No 1920/2006 (as amended).

Based on the information reported by the EWS network, on 2 September 2020, the EMCDDA assessed the existing information (\(^{8,9}\)) on 4F-MDMB-BICA, based on the following criteria:

- reports of health problems;
- reports of social problems;
- reports of seized material;
- pharmacological and toxicological properties and analogy with better-studied substances; and
- potential for further spread.

The EMCDDA concluded that the assessment gave rise to concerns that 4F-MDMB-BICA may pose health or social risks at Union level and, consequently, determined that an initial report should be produced.

2. Information collection process

In accordance with the requirements of Article 5b of Regulation (EC) No 1920/2006, on 9 September 2020, the EMCDDA launched a procedure for the collection of additional information on 4F-MDMB-BICA to support the production of the initial report.

The EMCDDA collected information through:

- a structured reporting form distributed to the Reitox national focal points in the Member States, Turkey and Norway (Article 5b(4));
- routine monitoring of open source information;
- a search of open source information conducted specifically for the production of the initial report, which included scientific and medical literature, official reports, grey literature,

\(^{9}\) This included information reported to the EMCDDA through the Early Warning System, including case reports and aggregated datasets.
internet drug discussion forums and related websites (hereafter referred to as ‘user websites’), and online vendors.

In addition, the EMCDDA also submitted requests as follows:

- A request was submitted to the World Health Organization (WHO) to determine if 4F-MDMB-BICA is under assessment or has been under assessment within the system established by the 1961 Single Convention on Narcotic Drugs, as amended by the 1972 Protocol, and the 1971 Convention on Psychotropic Substances (‘United Nations system’).

- A request was submitted to the EMA to determine if 4F-MDMB-BICA is used as an active substance in a medicinal product for human or veterinary use at Union or national level (Article 5b(5)). Specifically, the EMA was asked if 4F-MDMB-BICA is an active substance in:

 b. a medicinal product for human use or in a veterinary medicinal product that is the subject of an application for a marketing authorisation;

 c. a medicinal product for human use or in a veterinary medicinal product whose marketing authorisation has been suspended by the competent authority;

 d. an unauthorised medicinal product for human use in accordance with Article 5 of Directive 2001/83/EC or in a veterinary medicinal product prepared extemporaneously by a person authorised to do so under national law in accordance with point (c) of Article 10(1) of Directive 2001/82/EC;

 e. an investigational medicinal product as defined in point (d) of Article 2 of Directive 2001/20/EC of the European Parliament and of the Council (13).

- Europol was asked to provide information on the involvement of criminal groups in the manufacture, distribution and distribution methods, and trafficking of 4F-MDMB-BICA, and in any use of 4F-MDMB-BICA (Article 5b(6)).

The European Chemicals Agency (ECHA), the European Centre for Disease Prevention and Control (ECDC) and the European Food Safety Authority (EFSA) were asked to provide the information and data at their disposal on 4F-MDMB-BICA (Article 5b(7)).

The information collection process was concluded on 7 October 2020. The EMCDDA received responses from all 28 Member States, Turkey and Norway. In addition, the EMCDDA received responses from the WHO, the EMA, Europol, ECHA, the ECDC and the EFSA.

3. Information required by Article 5b(2) of Regulation (EC) No 1920/2006 (as amended)

The order and titles of Sections 3.1 to 3.9 below are as they appear in Article 5b(2) of Regulation (EC) No 1920/2006 (as amended); Sections 3.1 to 3.4 are cross-referenced with the headings of Article 5b(2a) to Article 5b(2d) of the Regulation.

3.1 Nature, number and scale of incidents showing health and social problems in which the new psychoactive substance may potentially be involved, and the patterns of use of the new psychoactive substance

As 4F-MDMB-BICA has been on the drug market for only a short period of time, it may not be routinely screened for in many forensic and toxicology laboratories. Therefore, the presence of 4F-MDMB-BICA on the European drug market may be undetected in some areas, including in law enforcement seizures as well as in biological samples related to serious adverse events. It is also important to note that, because of differences in reporting practices across Europe, identifications of 4F-MDMB-BICA may be unreported to the Reitox national focal points and as a consequence to the EMCDDA.

3.1.1 Information from seizures, collected and biological samples

As of 8 October 2020, 4F-MDMB-BICA had been identified in a total of 256 detections in 10 Member States: Hungary (219 detections), the United Kingdom (17), Belgium (4), Slovenia (4), Cyprus (3), Finland (3), Germany (2), Lithuania (2), Croatia (1) and Poland (1). These relate to 108 seizures, of which 101 were reported by the police and 7 by customs, 1 was a collected sample and 147 were biological samples (of which 21 were associated with deaths). All detections occurred in 2020. In addition, two detections were reported after the data submission deadline, one by Italy (14) and one by Slovenia (15), which have not been included in the dataset.

(14) Italy reported a seizure of a padded postal envelope containing two packages, one of which contained 4F-MDMB-BICA (labelled as 4F-MDMB-BINACA). The seizure occurred in July 2020.

(15) Slovenia reported a seizure made by police in prison, of 6.31 g of herbal material also containing MDMB-4en-PINACA, 5F-MDMB-PICA, 5F-EMB-PICA and traces of JWH-210.
Information from seizures

Law enforcement seizures of 4F-MDMB-BICA have been reported by 10 Member States: Hungary (72 seizures), the United Kingdom (17), Belgium (4), Cyprus (3), Finland (3), Slovenia (3), Germany (2), Lithuania (2), Croatia (1) and Poland (1).

In total, 108 seizures were reported. These included 101 seizures by the police and 7 by customs. Ten of the police seizures occurred in prisons. Where reported, seizures took place between March and September 2020.

Seizures included smoking mixtures (31 cases), powders (18), pieces of paper impregnated with the substance (including blotters) (7) and liquids (3). For 49 seizures reported by Hungary, no details were provided.

Customs seizures

A total of 7 seizures made by customs amounting to 5.57 kg were reported by Belgium (4) and Finland (3). All the seizures were in powder form, and occurred between March and September 2020.

The four seizures reported by Belgian customs accounted for 99.9 % of the powders seized (one seizure of 3 kg, one of 1.5 kg and two of approximately 0.5 kg each). The seizure that led to the formal notification of 4F-MDMB-BICA, made at Bierset Airport, was reported as a case of large-scale international trafficking; the parcel originated from China and was en route to the Netherlands. The destination for all the seizures reported by Belgium was the Netherlands.

The seizures reported by Finnish customs ranged from 0.4 mg to 1.3 g. They originated from the Netherlands (2) and Spain (1). One of the seizures was labelled as ‘5F-MDMB-2201’.

In one seizure reported by Belgian customs, the precursor ethylamine (ethanamine) was identified at approximately 4 % (w/w) along with other minor impurities (Section 3.2.3). No other substances were reported in any of the other seizures made by customs.

The available information suggests that powders of 4F-MDMB-BICA are sourced from China and imported to Europe, namely via Belgium to the Netherlands.

Police seizures

A total of 101 seizures by the police were reported by Hungary (72 seizures), the United Kingdom (17), Cyprus (3), Slovenia (3), Germany (2), Lithuania (2), Croatia (1) and Poland (1). The seizures occurred between April and September 2020.

Out of the 101 police seizures, 10 seizures occurred in prisons and other custodial settings, and were reported by Slovenia (3), the United Kingdom (3), Lithuania (2), Cyprus (1) and Hungary (1).

4F-MDMB-BICA was detected in smoking mixtures, powders, pieces of paper impregnated with the substance (including blotters) and liquids. All the seizures of impregnated papers and blotters occurred in prisons. A summary is provided below.
Smoking mixtures

In total, 31 police seizures of smoking mixtures amounting to 606.35 g and containing 4F-MDMB-BICA were reported by Hungary (12), the United Kingdom (12), Slovenia (3), Cyprus (2), Croatia (1) and Germany (1).

There is no indication of the concentration of 4F-MDMB-BICA in the smoking mixtures. In 15 cases, no substances other than 4F-MDMB-BICA were reported. In the remaining 16 cases, one other synthetic cannabinoid (10 cases) or two (2 cases), three (3 cases) or seven (1 case) other cannabinoids were also identified.

The three seizures reported by Slovenia occurred in prisons. All the seizures reported also contained MDMB-4en-PINACA, 5F-MDMB-PICA and 5F-EMB-PICA. One of the seizures contained a total of eight different synthetic cannabinoids.

In one case, the mixtures were found in a branded ‘legal high’ product (‘Pico Bello’); in another case, the mixture was found in an aluminium bag.

Powders

In total, 11 seizures of powder containing 4F-MDMB-BICA were reported by three Member States: Hungary (9), Germany (1) and Poland (1). The seizures reported by Germany and Poland amounted to 10.78 g.

Powders were described as white, off-white, brown or orange. No other substances were reported to be detected in the powders.

In one case reported by Hungary, powder ‘nuggets’ were found in a mixture with tobacco at the scene of a death. It is not clear whether the mixture was supplied as such to the deceased or whether it was home-made.

Impregnated papers, including blotters

In total, 7 seizures of paper impregnated with 4F-MDMB-BICA, including 13 blotters (5 of the seizures) were reported. These were reported by the United Kingdom (3), Lithuania (2), Cyprus (1) and Hungary (1). All the seizures occurred in prisons and other custodial settings.

Other synthetic cannabinoids were detected in 3 of the seizures, predominantly MDMB-4en-PINACA (identified in 3 cases) and 5F-MDMB-PICA (2).

In the case reported by Cyprus, 14 impregnated sheets of A4-sized paper, which had been concealed inside a television, were seized in a delivery of a package to a prison.

Liquids

A total of 3 seizures containing 4F-MDMB-BICA in liquid form were reported by two Member States: the United Kingdom (2) and Hungary (1).

In the 2 seizures reported by the United Kingdom, 4F-MDMB-BICA was detected in an e-liquid contained within a vape cartridge. The seizures were of 0.8 ml and 563 ml. The seizure of 0.8 ml also contained 4F-MDMB-BINACA.

In the seizure reported by Hungary, 4F-MDMB-BICA was identified in nail varnish remover.
- **Other**

For 49 seizures reported by Hungary, no details were provided.

Information from collected samples

Slovenia reported a test-purchase of 4F-MDMB-BICA made by the EU-funded project RESPONSE; the substance was identified in 5 g of beige-brown powder contained in a zip-lock plastic bag. The purity of the sample was over 95%.

Information from biological samples

Serious adverse events with confirmed exposure to 4F-MDMB-BICA from biological samples (21 cases reported by Hungary) are discussed in Section 3.1.2.

In addition to these, Hungary reported 126 detections where 4F-MDMB-BICA was analytically confirmed in biological samples. All detections were reported as cases after police arrest. It was reported that in the majority of the cases other substances, mostly synthetic cannabinoids, in particular 5F-MDMB-PICA, were also identified. Where reported, the cases occurred between May and August 2020 (71 cases).

3.1.2 Health problems

As 4F-MDMB-BICA is a synthetic cannabinoid, the health risks may have some similarities with those associated with other synthetic cannabinoids.

Hungary reported 21 deaths in which 4F-MDMB-BICA had been identified in biological samples. The deaths occurred between May and August 2020. It was reported that in some of the deaths other synthetic cannabinoids, particularly 5F-MDMB-PICA, had also been identified in biological samples. The reported symptoms and clinical features included chest pain, respiratory problems, tremor and seizures. Further information on the role of 4F-MDMB-BICA in the deaths is currently unavailable.

In some cases, 4F-MDMB-BICA appears to be supplied to users in a mixture with one or more other synthetic cannabinoids, including 5F-MDMB-PICA as well as MDMB-4en-PINACA (also currently the subject of an EMCDDA initial report). It is unknown whether these substances are added deliberately or accidentally by producers. In addition, it is also unknown what effect such mixtures may have in humans.

The ECDC reported that currently they do not have any information on 4F-MDMB-BICA.

3.1.3 Social problems

While there is limited data for 4F-MDMB-BICA, the associated social risks might share some similarities with cannabis and other synthetic cannabinoids.

Of particular note is that synthetic cannabinoids are increasingly used by vulnerable groups, such as prisoners and people experiencing homelessness. Reports suggest that this has caused new health and social problems and exacerbated existing ones for these groups. For example, in prisons, alongside the adverse health effects, the market in synthetic cannabinoids has been linked to an increase in aggression, violence, bullying and debt. In
some cases, this has caused a serious threat to the overall safety and security of the prison environment (Blackman and Bradley, 2017; HMIP, 2015; Ralphs et al., 2017; User Voice, 2016). As such, it is concerning that 4F-MDMB-BICA has been seized in prisons and other custodial settings in at least five Member States during 2020.

3.1.4 Patterns of use

There is limited information on the patterns of use of 4F-MDMB-BICA. As 4F-MDMB-BICA is a synthetic cannabinoid, it could be expected that suppliers, as well as users who are looking for ‘legal’ substitutes for cannabis and replacements for controlled synthetic cannabinoids, may be interested in 4F-MDMB-BICA. This may include individuals subject to drug testing (such as drivers, prisoners, those in drug treatment and those subject to workplace drug testing), as commonly used drug tests may be unable to detect the compounds.

In addition, reports suggest that, in some areas, high-risk drug users and other vulnerable groups, such as prisoners and people experiencing homelessness, may specifically seek out synthetic cannabinoids, as they are readily available and have gained a reputation for causing profound intoxication while being cheaper than other drugs. In addition, synthetic cannabinoids, particularly when impregnated on to paper, can be easy to smuggle into prison and other custodial settings.

Although limited, there is some information to suggest a recent increase in vaping of synthetic cannabinoids using electronic cigarettes by young people, including teenagers, in some Member States.

Similar to other new psychoactive substances, it also appears that there is interest in 4F-MDMB-BICA by people who self-experiment with a range of substances (so-called psychonauts).

Although 4F-MDMB-BICA may be deliberately sought after by some users, in most cases, such as among those who purchase it at street level, they are likely to be unaware that they are using the substance, which presents an inherent risk to the individuals.

There are three main types of products containing 4F-MDMB-BICA that are sold on the drug market. The most common products are smoking mixtures, where 4F-MDMB-BICA is mixed with herbal plant material or tobacco that is then smoked or inhaled from a vaporiser (similar to herbal cannabis, the mixture is usually prepared for smoking as a hand-rolled cigarette or ‘joint’). There are also e-liquids, where a solution of 4F-MDMB-BICA is prepared by mixing it with a solvent that is then vaped using an electronic cigarette. In addition, 4F-MDMB-BICA can also be impregnated on to paper that can then be smoked or vaped. The latter is a commonly used approach to smuggle synthetic cannabinoids into prison in some countries. To a lesser extent, users may prepare their own similar products using 4F-MDMB-BICA purchased from a vendor or dealer.
3.2 Chemical and physical description of the new psychoactive substance and the methods and precursors used for its manufacture or extraction

3.2.1 Chemical description and names

4F-MDMB-BICA is a synthetic cannabinoid receptor agonist. It contains an indole core, a common structural feature in many of the synthetic cannabinoids monitored by the EMCDDA, a carboxamide link, a dimethyl methyl butanoate linked group and a 4-fluorobutyl tail.

4F-MDMB-BICA appears not to have been described in the scientific or patent literature prior to its first detection on the drug market in Europe in March 2020.

4F-MDMB-BICA shares structural features with a number of substances, including 5F-MDMB-PICA (16), 4F-MDMB-BINACA (16), 5F-MDMB-PINACA (17) and MDMB-4en-PINACA (18). Structurally, 4F-MDMB-BICA differs in the tail (5-fluoropentyl) from 5F-MDMB-PICA; in the core (indazole) from 4F-MDMB-BINACA; in the core (indazole) and in the tail (5-fluoropentyl) from 5F-MDMB-PINACA; and in the core (indazole) and tail (pent-4-ene moiety) from MDMB-4en-PINACA.

The molecular structure, molecular formula and molecular mass of 4F-MDMB-BICA are provided in Figure 1.

(16) 5F-MDMB-PICA and 4F-MDMB-BINACA were critically reviewed by the WHO’s Expert Committee on Drug Dependence (ECDD) in 2019 and have been added to Schedule II of the 1971 United Nations Single Convention on Psychotropic Substances, which will come into force on 3 November 2020.

(17) 5F-MDMB-PINACA was critically reviewed by the ECDD in 2017 and is internationally controlled under Schedule II of the 1971 United Nations Single Convention on Psychotropic Substances.

(18) MDMB-4en-PINACA is currently under review by the ECDD and is the subject of an EMCDDA initial report.
FIGURE 1
Molecular structure, molecular formula and molecular mass of 4F-MDMB-BICA (information on 5F-MDMB-PICA, 4F-MDMB-BINA, 5F-MDMB-PINACA and MDMB-4en-PINACA is provided for comparison)

<table>
<thead>
<tr>
<th>Molecular structure</th>
<th>Common name</th>
<th>Molecular formula</th>
<th>Molecular mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4F-MDMB-BICA</td>
<td>C_{20}H_{27}FN_{2}O_{3}</td>
<td>362.44</td>
</tr>
<tr>
<td></td>
<td>5F-MDMB-PICA (19)</td>
<td>C_{21}H_{29}FN_{2}O_{3}</td>
<td>376.47</td>
</tr>
<tr>
<td></td>
<td>4F-MDMB-BINA (20)</td>
<td>C_{19}H_{26}FN_{3}O_{3}</td>
<td>363.43</td>
</tr>
<tr>
<td></td>
<td>5F-MDMB-PINACA (21)</td>
<td>C_{20}H_{28}FN_{3}O_{3}</td>
<td>377.453</td>
</tr>
<tr>
<td></td>
<td>MDMB-4en-PINACA (22)</td>
<td>C_{20}H_{27}N_{3}O_{3}</td>
<td>357.45</td>
</tr>
</tbody>
</table>

Common name:
4F-MDMB-BICA

Systematic (IUPAC) name:
Methyl 2-((1-(4-fluorobutyl)-1H-indol-3-yl)carbonyl)amino)-3,3-dimethylbutanoate

Other chemical names:
- Methyl N-[1-(4-fluorobutyl)-1H-indole-3-carbonyl]-3-methylvalinate
- Methyl 2-[[1-(4-fluorobutyl)indole-3-carbonyl]amino]-3,3-dimethyl-butanoate
- Methyl 2-((1-(4-fluorobutyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate
- Methyl 2-[[1-(4-fluorobutyl)indol-3-yl]formamido)-3,3-dimethylbutanoate
- Methyl N-[[1-(4-fluorobutyl)-1H-indol-3-yl]carbonyl]-3-methylvalinate

Other names:
MDMB-4F-BICA

(19) Methyl 2-[[1-(5-fluoropentyl)indole-3-carbonyl]amino]-3,3-dimethyl-butanoate,
(20) Methyl 2-((1-(4-fluorobutyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate,
(21) Methyl 2-[[1-(5-fluoropentyl)indazole-3-carbonyl]amino]-3,3-dimethyl-butanoate,
(22) Methyl 3,3-dimethyl-2-((pent-4-en-1-yl)-1H-indazole-3-carboxamido)butanoate.
INITIAL REPORT | 4F-MDMB-BICA

4F-MDMB-BUTICA
MDMB-4F-BUTICA
4-Fluoro MDMB-BICA
4-Fluoro MDMB-BUTICA
4FBC
4FBCA
MDMB-073-F
4F-MDMB-2201

Chemical Abstracts Service (CAS) registry numbers:
Not registered

IUPAC International Chemical Identifier Key (InCHI Key):
QIKHYQCGUGFBB-UHFFFAOYSA-N

Simplified Molecular-Input Line-Entry System (SMILES):
O=C(OC)C(NC(=O)c1cn(CCCF)c2ccccc21)C(C)(C)C

3.2.2 Physical description

There is no information available on the solubility, lipophilicity, melting and boiling points or other physico-chemical properties of 4F-MDMB-BICA.

Due to its similarity to 5F-MDMB-PINACA, 4F-MDMB-BICA is expected to be soluble in ethanol (EtOH), methanol (MeOH) and dimethyl sulfoxide (DMSO) and partially soluble in water.

To date, seizures and collected samples containing 4F-MDMB-BICA reported to the EMCDDA have been in white, brown and orange powders and in herbal material. 4F-MDMB-BICA has also been identified in blotters, papers impregnated with the substance and liquids contained in vape cartridges.

4F-MDMB-BICA has been identified in combination with other synthetic cannabinoids including 5F-MDMB-PICA, MDMB-4en-PINACA, 5F-EMB-PICA, 5F-MDMB-PINACA, 4F-MDMB-BINACA, CUMYL-5F-PINACA and CUMYL-PeGACLONE.

In at least some of the detections, the free base of 4F-MDMB-BICA was identified.

A more detailed description of seizures and collected samples can be found in Section 3.1.1.
3.2.3 Methods and chemical precursors used for the manufacture or extraction

No information was reported by the Member States, Norway or Turkey about the chemical precursors or manufacturing methods used to make the 4F-MDMB-BICA that has been identified in Europe.

The synthesis of 4F-MDMB-BICA has not been reported in the literature. However, it may be carried out in analogy to the synthesis of its higher homologue, 5F-MDMB-PICA, described by Banister et al. (2016), starting with indole that was reacted with methyl L-tert-leucinate, yielding (S)-5F-MDMB-PICA. The (R)-enantiomer may be synthesised under identical conditions using methyl D-tert-leucinate instead of methyl L-tert-leucinate. Using methyl tert-leucinate as a racemate would lead to the production of the racemic substance.

Potential precursors of 4F-MDMB-BICA are indole-3-carboxylic acid, indole-3-carboxylic acid methyl ester, indole, L-tert-leucine methyl ester (for the synthesis of the (S)-enantiomer) and 1-bromo-4-fluorobutane.

There is no information on the actual manufacturing methods used to make the 4F-MDMB-BICA that has been identified in Europe. However, the impurities identified may provide some indication of the synthetic route utilised. In one of the samples of powder seized by Belgian customs, the precursor ethanamine (commonly known as ethylamine) was identified in the sample at approximately 4% (w/w), along with other minor impurities. In another seizure, triethylamine salt and dimethylformamide were reported as impurities.

3.2.4 Detection and analysis

Methods documented in the literature for the identification of 4F-MDMB-BICA in physical samples include gas chromatography-mass spectrometry (GC-MS) (NPS Discovery, 2020; Cayman Chemical, 2020; Slovenian National Forensic Laboratory, 2020; Norman et al., 2020a); Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and 1H, 13C and 19F nuclear magnetic resonance (NMR) spectroscopy (Slovenian National Forensic Laboratory, 2020); ultraviolet spectroscopy (Cayman Chemical, 2020); liquid chromatography-mass spectrometry (LC-MS) (NPS Discovery, 2020); ultra-performance liquid chromatography-photodiode detector-quadrupole/time-of-flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) and ion mobility spectrometry (IMS) (Norman et al., 2020a,b).

No methods documenting the detection of 4F-MDMB-BICA in biological samples were identified in the literature.

The quantification of 4F-MDMB-BICA in products can be carried out according to the general procedure described by the United Nations Office on Drugs and Crime (UNODC, 2013).

4F-MDMB-BICA contains a stereocentre thus allowing for the existence of a pair of enantiomers, (R)- and (S)-4F-MDMB-BICA. The (S)-enantiomer of 4F-MDMB-BICA is available as a reference standard, in the form of a crystalline solid (23).

There is no representative information on the enantiomeric composition of the samples of 4F-MDMB-BICA detected in the European Union, which may in part reflect the fact that stereochemical analysis is not routinely undertaken in forensic laboratories. Based on the literature on similar compounds (Banister et al., 2016) and the precursors most likely to be used, an (S)-configuration of the stereocentre could be expected.

The differentiation of enantiomers is possible using the following techniques chiral chromatography, vibrational circular dichroism (VCD) spectroscopy and/or electronic circular dichroism (ECD) spectroscopy.

4F-MDMB-BICA and 5F-AMF-PICA (24) are isomers; therefore, it is important to note that GC-MS analyses of these substances will result in very similar mass spectrometry fragmentation patterns. The ability to distinguish between isomers requires the use of analytical reference standards, access to reference spectra for both substances and/or additional analytical methods (25).

Norman et al. (2020b) highlighted that, although 4F-MDMB-BICA is not currently included in ion trap mobility spectroscopy (ITMS) instrument libraries, the substance produced a ‘system “spice” alarm’ as a result of structural similarities with synthetic cannabinoids used to set up the alarms, which then allowed for the provisional identification of 4F-MDMB-BICA.

4F-MDMB-BICA is currently screened for in some, but not all, forensic and toxicology laboratories in Europe. As a result, some cases of 4F-MDMB-BICA are likely to be undetected and under-reported, leading to incomplete data regarding detection of 4F-MDMB-BICA in Europe.

3.3 Pharmacological and toxicological description of the new psychoactive substance

4F-MDMB-BICA is a synthetic cannabinoid receptor agonist. Limited data suggest that 4F-MDMB-BICA is a CB1 receptor agonist (NBFM and PHA, 2020) that shares some similarities with the major psychoactive constituent of cannabis, Δ⁹-tetrahydrocannabinol (THC), and other synthetic cannabinoids, such as JWH-018.

The acute effects of THC (and consequently cannabis) include relaxation, euphoria, lethargy, depersonalisation, distorted perception of time, impaired motor performance, hallucinations, paranoia, confusion, fear, anxiety, dry mouth, reddening of the conjunctivae of the eyes, tachycardia, and nausea and vomiting. THC also has an abuse liability and dependence potential (Pertwee, 2014; Wiley et al., 2018). Similar effects to cannabis have been reported for synthetic cannabinoids such as 4F-MDMB-BICA. In some cases, the effects are reported to be more pronounced/severe (EMCDDA, 2017).

Compared with cannabis, severe and fatal poisoning appears to be more common with synthetic cannabinoids (EMCDDA, 2017; Tait et al., 2016). Poisoning may include rapid loss of consciousness/coma, cardiovascular effects (such as hypertension, tachycardia, bradycardia, chest pain, myocardial infarction and stroke), seizures and convulsions, vomiting/hyperemesis, delirium, agitation, psychosis, and aggressive and violent behaviour.

(24) Methyl 2-[[1-(5-fluoropentyl)indole-3-carbonyl]amino]-3-methyl-butanoate.

(25) Reference standard material for 5F-AMF-PICA is available: https://www.caymanchem.com/product/15971/mmb2201
Sudden death has also been reported. The mechanisms of this toxicity are poorly understood (Tai and Fantegrossi, 2016), but factors that are likely to play an important role are the potency of the substances and the doses that users are exposed to. In addition, some of the effects of poisoning — such as loss of consciousness or behavioural effects — may place users at risk of additional harms such as choking on vomitus, drowning or self-harm.

Considering its chemical structure, 4F-MDMB-BICA might pose similar health risks to 4F-MDMB-BINACA and 5F-MDMB-PICA. Both 4F-MDMB-BINACA and 5F-MDMB-PICA have been associated with serious adverse events, including deaths (Kleis et al., 2020; Krotulski et al., 2019; WHO, 2019a,b).

Currently, there is no antidote to poisoning caused by synthetic cannabinoids.

In general, the use of smoking mixtures containing synthetic cannabinoids appears to pose a high risk of poisoning. This is because manufacturers guess the amount of cannabinoid(s) to add to the herbal material, and the manufacturing process makes it difficult to dilute them sufficiently and distribute them consistently throughout the material. This can result in mixtures that contain a large amount of highly potent cannabinoid, as well as ‘hot pockets’, where the cannabinoid is highly concentrated within parts of the herbal material (Schäper, 2016). Together, this makes it difficult for users to control the dose that they are exposed to. As these mixtures are typically smoked as cigarettes (‘joints’), users can inadvertently administer a toxic dose; in some cases, a small number of puffs from such a cigarette have been sufficient to cause severe poisoning. Reflecting these risks, smoking mixtures have caused a large number of outbreaks of mass poisonings in recent years (Adams et al., 2017; Kasper et al., 2015; Schwartz et al., 2015; Shevyrin et al., 2015; Trecki et al., 2015; Tyndall et al., 2015). Such outbreaks have the potential to overwhelm local healthcare systems, which is of particular concern considering the ongoing COVID-19 pandemic.

While there are limited data on 4F-MDMB-BICA, the chronic health risks might share similarities with those of cannabis and other synthetic cannabinoids. This may include dependence.

ECHA reported to the EMCDDA that it does not currently have any information on 4F-MDMB-BICA at its disposal, in particular any data on its toxicological properties. The EFSA reported to the EMCDDA that it does not currently have any information on 4F-MDMB-BICA, neither describing the hazard nor concerning human exposure.

3.4 Involvement of criminal groups in the manufacture or distribution of the new psychoactive substance

Europol received replies from 19 Member States: Belgium, Bulgaria, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Latvia, Lithuania, Luxembourg, Romania, Portugal, Slovakia, Slovenia, Spain and the United Kingdom.
Replies were also received from the United States (US) Drug Enforcement Administration (DEA) (26) and New Zealand (27).

No information was received on the involvement of criminal groups in the manufacture or distribution of 4F-MDMB-BICA.

All seizures of 4F-MDMB-BICA reported to Europol occurred in 2020, with the majority reported to have taken place between April and September 2020.

Belgium reported four seizures of between 0.001 kg and 3 kg of 4F-MDMB-BICA, between April and July 2020. 4F-MDMB-BICA was labelled as ‘ion exchange resin’ in two of these seizures. The substance was en route from China to the Netherlands in three of the seizures. Belgium remarked that it is a transit country for 4F-MDMB-BICA from China to other EU Member States, such as Hungary, the Netherlands, Romania and the United Kingdom.

Slovakia (28) reported that 4F-MDMB-BICA was identified with MDMB-4en-PINACA and A-CHMINACA (29) in yellow crystalline material, contained in two plastic tubes, seized in postal consignments en route from the Netherlands to Hong Kong, in September 2020.

4F-MDMB-BICA was also identified in 5 g of herbal material seized in a prison in Slovenia in September 2020.

4F-MDMB-BICA was also identified in seizures in Finland and Romania (30) in 2020.

3.5 Information on the human and veterinary medical use of the new psychoactive substance, including as an active substance in a medicinal product for human use or in a veterinary medicinal product

Based on the reported information from the EMA (31), it appears that 4F-MDMB-BICA is not an active substance in:

b. a medicinal product for human use or in a veterinary medicinal product that is the subject of an application for a marketing authorisation;

c. a medicinal product for human use or in a veterinary medicinal product whose marketing authorisation has been suspended by the competent authority.

(26) The US DEA did not report any seizures of 4F-MDMB-BICA.
(27) New Zealand did not report any seizures of 4F-MDMB-BICA.
(28) Slovakia had not reported this seizure of 4F-MDMB-BICA to the EMCDDA.
(29) N-(1-adamantyl)-1-(cyclohexylmethyl)indazole-3-carboxamide.
(30) Romania had not reported this seizure of 4F-MDMB-BICA to the EMCDDA.
(31) Twenty-six Member States, as well as Norway and Iceland, provided a response to the EMA’s request regarding human and/or veterinary medicinal products.
In addition, it appears that 4F-MDMB-BICA is not an active substance in the following, although the information, especially in relation to use in extemporaneously prepared products, is unknown in some cases:

d. an unauthorised medicinal product for human use in accordance with Article 5 of Directive 2001/83/EC or in a veterinary medicinal product prepared extemporaneously by a person authorised to do so under national law in accordance with point (c) of Article 10(1) of Directive 2001/82/EC;

3.6 Information on the commercial and industrial use of the new psychoactive substance, the extent of such use, as well as its use for scientific research and development purposes

4F-MDMB-BICA is used as an analytical reference material in clinical and forensic case work as well as scientific research. There is currently no information that suggests that 4F-MDMB-BICA is used for other legitimate purposes.

ECHA and the EFSA reported that searches for 4F-MDMB-BICA did not retrieve any results in their databases.

3.7 Information on whether the new psychoactive substance is subject to any restrictive measures in the Member States

Sixteen Member States (Bulgaria, Czechia, Denmark, Estonia, Finland, Greece, Ireland, Italy, Malta, the Netherlands, Portugal, Romania, Slovakia, Slovenia, Spain and Sweden) reported that 4F-MDMB-BICA is not subject to restrictive measures at national level.

Drug control legislation

Seven Member States (Croatia, Cyprus, France, Latvia, Luxembourg, Poland and the United Kingdom) and Turkey reported that 4F-MDMB-BICA is controlled under drug control legislation:

- Croatia reported that 4F-MDMB-BICA is controlled within the List of drugs, psychotropic substances and plants used to produce drugs, and substances that can be used for the production of drugs (OG 13/19) since 2016;

- Cyprus reported that 4F-MDMB-BICA is controlled under drug control legislation (generic legislation) since 15 June 2018;

- France reported that 4F-MDMB-BICA is controlled under drug control legislation (NOR: AFSP1710288A) since 31 March 2017;

- Latvia reported that 4F-MDMB-BICA is controlled under drug control legislation (the Law on Procedures for the Coming into Force and Application of the Criminal Law) since 2013;
Luxembourg reported that 4F-MDMB-BICA is controlled under drug control legislation (RGD du 20 avril 2009 modifiant le RGD modifié du 20 mars 1974 concernant certaines substances psychotropes) since 2009;

Poland reported that 4F-MDMB-BICA is covered by the generic definition of synthetic cannabinoids (Regulation of the Minister of Health on Regulation of the Minister of Health on list of psychotropic drugs, psychoactive substances and new psychoactive substances; main act: Act on Counteracting Drug Addiction) since July 2018;

the United Kingdom reported that 4F-MDMB-BICA is controlled under the Misuse of Drugs Act 1971 since 2 December 2016;

Turkey reported that 4F-MDMB-BICA is included in Law on Drug Control No 2313 (taken automatically under legal control with the generic legislation as a new psychoactive substance detected in the country) as of March 2019.

New psychoactive substance legislation

Four Member States (Austria, Belgium, Germany and Hungary) reported that 4F-MDMB-BICA is controlled under specific new psychoactive substances control legislation:

- Austria reported that 4F-MDMB-BICA is covered by the Austrian Act on New Psychoactive Substances;
- Belgium reported that 4F-MDMB-BICA is controlled under Belgian Generic Legislation, active since September 2017;
- Germany reported that 4F-MDMB-BICA is covered by the New Psychoactive Substances Act (NpSG);
- Hungary reported that 4F-MDMB-BICA is controlled under specific new psychoactive substance control legislation (Regulation 55/2014 (XII.30) of the Ministry of Human Capacities).

Medicines legislation

Lithuania and Norway reported that 4F-MDMB-BICA is controlled under medicines legislation:

- Lithuania reported that 4F-MDMB-BICA is controlled under medicines legislation (falling under the definition of the generic group of synthetic cannabinoids) since 21 September 2015;
- Norway reported that 4F-MDMB-BICA is controlled under the Norwegian Law of Medicines.
3.8 Information on whether the new psychoactive substance is currently or has been under assessment within the system established by the 1961 Single Convention on Narcotic Drugs, as amended by the 1972 Protocol, and the 1971 Convention on Psychotropic Substances

On 1 October 2020, the WHO informed the EMCDDA that 4F-MDMB-BICA is not currently under assessment nor has it been under assessment by the United Nations system.

3.9 Other relevant information

Switzerland

In June and July 2020, the drug-checking service Saferparty reported two samples of cannabis adulterated with 4F-MDMB-BICA. Both samples contained other synthetic cannabinoids: MDMB-4en-PINACA and 5F-MDMB-PICA (Saferparty, 2020).

United States

In the United States, the Center for Forensic Science Research and Education (CFSRE) reported its first identification of 4F-MDMB-BICA in July 2020. The report was related to the detection of 4F-MDMB-BICA in plant-like material seized in May 2020 (NPS Discovery, 2020).

4. Analysis and assessment

Methyl 2-{(1-(4-fluorobutyl)-1H-indol-3-yl)carbonyl}amino)-3,3-dimethylbutanoate (4F-MDMB-BICA) is a synthetic cannabinoid receptor agonist monitored by the EMCDDA as a new psychoactive substance in accordance with Regulation (EC) No 1920/2006 (as amended).

4F-MDMB-BICA has been available on the drug market in Europe since at least March 2020. The substance is sold as a ‘legal’ replacement for cannabis and other controlled synthetic cannabinoids. Limited information suggests that 4F-MDMB-BICA is a potent CB₁ receptor agonist and, as such, shares some pharmacological similarities with Δ⁸-tetrahydrocannabinol (THC), which is responsible for the major psychoactive effects of cannabis and other synthetic cannabinoids, such as JWH-018, which are under international control.

The available information suggests that 4F-MDMB-BICA is manufactured by chemical companies based in China. It is imported into Europe as bulk powders, and then sold and distributed in wholesale and retail amounts in Europe, as either a powder for processing into products or finished consumer products. There are three main types of products containing 4F-MDMB-BICA that are sold on the drug market: smoking mixtures, where 4F-MDMB-BICA
is mixed with herbal plant material or tobacco that is then smoked or inhaled from a vaporiser (similar to herbal cannabis, the mixture is usually prepared for smoking as a hand-rolled cigarette or ‘joint’); e-liquids, where a solution of 4F-MDMB-BICA is prepared by mixing it with a solvent that is then inhaled using an electronic cigarette; and paper impregnated with 4F-MDMB-BICA that can then be smoked or vaped. The latter is a commonly used approach to smuggle synthetic cannabinoids into prison in some countries. To a lesser extent, users may prepare their own similar products using 4F-MDMB-BICA purchased from a vendor or dealer.

As of October 2020, 4F-MDMB-BICA had been identified in 10 Member States and 108 seizures had been reported, which included 5.6 kg of powder and 0.6 kg of smoking mixtures.

A total of 21 deaths with confirmed exposure to 4F-MDMB-BICA have been reported by one Member State, Hungary. The deaths occurred over a relatively short period of time, between May and August 2020. Further information on the role of 4F-MDMB-BICA in the deaths is currently unavailable.

It is important to note that the presence of 4F-MDMB-BICA on the drug market and serious adverse events may be undetected in Europe since the substance is not routinely screened for in some laboratories.

The available data suggests that 4F-MDMB-BICA may be used by cannabis users, by those who are regularly subjected to drug testing procedures (including those in prison), and by people who self-experiment with a range of psychoactive substances (so-called ‘psychonauts’). The substance may also be used by high risk drug users and other marginalised groups, such as people experiencing homelessness and prisoners, as synthetic cannabinoids are typically readily available, and have gained a reputation for causing profound intoxication while being comparatively cheaper to other drugs. In addition, synthetic cannabinoids, particularly when impregnated on to paper, can be easy to smuggle into the prisons and other custodial settings. Although limited, there is some information to suggest a recent increase in vaping of synthetic cannabinoids using electronic cigarettes by young people, including teenagers, in some Member States.

Because of their high potency and the unintentionally high doses that users may be exposed to, synthetic cannabinoids can pose a high risk of severe poisoning, which in some cases can be fatal. These factors can also be responsible for the outbreaks of mass poisonings seen with synthetic cannabinoids. Such outbreaks have the potential to overwhelm local healthcare systems, which is of particular concern given the ongoing COVID-19 pandemic and the additional burden already on healthcare systems. There is no antidote to poisoning caused by synthetic cannabinoids.

In prisons, alongside the adverse health effects, the market in synthetic cannabinoids has been linked to an increase in aggression, violence, bullying, and debt. In some cases this has caused a serious threat to the overall safety and security of the prison environment. As such, it his is concerning given the reports of seizures of 4F-MDMB-BICA in prisons and other custodial settings in at least five Member States.

There is no information on whether or not criminal groups are involved in the manufacture, trafficking and distribution of 4F-MDMB-BICA in Europe. The effect of the ongoing COVID-
19 pandemic on the manufacture, trafficking, distribution and use of 4F-MDMB-BICA is currently unknown. However, seizures of bulk powders by European national customs agencies during the pandemic suggest that 4F-MDMB-BICA continues to be imported and distributed in Europe. It is possible that, in case of a reduced availability of cannabis and other synthetic cannabinoids in Europe, criminal groups, as well as drug users, may use a range of replacement substances, including 4F-MDMB-BICA.

Based on the available information, it appears that 4F-MDMB-BICA is not an active substance in a medicinal product for human use or in a veterinary medicinal product in Europe. However, the use of 4F-MDMB-BICA as an active substance in medicinal products prepared extemporaneously or in investigational medicinal products cannot be excluded in some Member States due to a lack of information. Aside from limited use as an analytical reference standard and in scientific research, there is currently no information that suggests that 4F-MDMB-BICA is used for other legitimate purposes.

4F-MDMB-BICA is subject to restrictive measures in 12 Member States, Turkey and Norway. It is unknown if 4F-MDMB-BICA is controlled in China, from where at least some of the substance on the European market has been sourced. 4F-MDMB-BICA has not been subject to assessment nor is it currently under assessment by the United Nations system.

Based on the information reported to the EMCDDA, there are indications that 4F-MDMB-BICA has the potential to spread rapidly in Europe. Of note is that the appearance of 4F-MDMB-BICA on the market appears to coincide with the recent decision to internationally control two closely related synthetic cannabinoids commonly found on the drug market in Europe, 4F-MDMB-BINACA and 5F-MDMB-PICA. As such, it is possible that 4F-MDMB-BICA will be a replacement for these substances.

The EMCDDA will continue to intensively monitor 4F-MDMB-BICA to ensure that new information is provided to the Member States, Europol, the Commission and the EMA through the European Union Early Warning System in a timely manner, to strengthen situational awareness as well as to continue to inform preparedness and response measures at both national and EU levels to protect public health.

Based on the analysis of the available information, the EMCDDA considers that there are indications that 4F-MDMB-BICA may pose health or social risks at Union level. We conclude that the potential health and social risks posed by the use, manufacture, distribution and involvement of criminal groups could be thoroughly assessed through a risk assessment procedure in accordance with Article 5c of Regulation (EC) No 1920/2006 (as amended).
5. References

NBFM (National Board of Forensic Medicine) and PHA (Public Health Agency of Sweden) (2020), English summary of receptor activation for 4-fluoro MDMB-BUTICA.

Recommended citation:

About the EMCDDA

The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) is the central source and confirmed authority on drug-related issues in Europe. For 25 years, it has been collecting, analysing and disseminating scientifically sound information on drugs and drug addiction and their consequences, providing its audiences with an evidence-based picture of the drug phenomenon at European level.

The EMCDDA’s publications are a prime source of information for a wide range of audiences including: policymakers and their advisors; professionals and researchers working in the drugs field; and, more broadly, the media and general public. Based in Lisbon, the EMCDDA is one of the decentralised agencies of the European Union.

More information

More information about the work and main outputs of the EU Early Warning System on new psychoactive substances:

Legal notice: Neither the EMCDDA nor any person acting on behalf of the EMCDDA is responsible for the use that might be made of the following information.

© European Monitoring Centre for Drugs and Drug Addiction, 2020

Reproduction is authorised provided the source is acknowledged. This publication is only available in electronic format.

EMCDDA, Praça Europa 1, Cais do Sodré, 1249-289 Lisbon, Portugal
Tel. (351) 211 21 02 00 | info@emcdda.europa.eu
emcdda.europa.eu | twitter.com/emcdda | facebook.com/emcdda